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Abstract-A comprehensive work has been performed by a numerical method to study the transient and 
stability characteristics of a double diffusive natural circulation loop. The behaviour of the flow in the 
system depends on the location of the state in the four-parameter space of the thermal and saline Rayleigh 
numbers, R, S, the Prandti and inverse Lewis numbers, P, Q. The stability chart in this space, obtained 
earlier, includes five main regions. Numerical results are presented here for flows in each of them. The 
transients approach monotonically or periodically stable steady states, of convection-controlled flows, or 
conductive rest states with no flow, in the monotonic and global stability regions, respectively. The rest 
state is also established in the subcritical region, if the initial velocity is smaller than a critical one, and to 
a steady flow otherwise. In the supercritical region, stable periodic solutions are established instead of the 
rest state, and in the periodic region the loop always reaches such steady oscillations, from any initial 
conditions. The frequency of the oscillations increases with S and decreases with R, P and Q. The heat 
transfer in the loop is also investigated, and it is found that some heat can be removed during the stable 

periodic flow. 

1. INTRODUCTION 

NATURAL circulation appears in geophysical processes 
and energy conversion systems. It provides means for 
energy transfer without forcing the flow by pumps 
or blowers, hence its importance in such systems as 
emergency heat removal from nuclear reactors after a 
hypothetical accident. Reviews on natural circulation 
have been written in the last decade, e.g. refs. [i, 21. 
Stability, bifurcation and chaos features make prob- 
lems of natural circulation interesting from the aca- 
demic point of view and careful system design is 
needed in practical applications. Extensive work has 
been done on these topics, e.g. in refs. [3-81. Combined 
effects of heat and mass transfer in free convection 
loops, i.e. double diffusive natural circulation, has not 
been studied, yet, in great detail. Theoretical analyses 
of toroidal loops were presented in refs. (9-111 and 
reviewed in ref. [ 121. 

The present paper is an extension of previous work 
[ 121. In that work an analytical method was developed 
to investigate the steady-state characteristics of a loop 
with double diffusion and to find stability regions in 
the parametric space, using linear stability analysis. 
Here a numerical method has been used to simulate 
the transient loop behaviour in each of these regions. 
Results are shown for the development of small per- 
turbations of the rest state and for transitions from 
forced to natural circulation. In all cases the tran- 
sients lead to stable system modes : steady flows, rest 
state or periodic oscillations, depending on the system 
parameters. In some of these the results confirm pre- 
vious observations, mainly where the steady flows or 
rest states are approached monotonically or oscil- 
latory in the corresponding stability domains. The 

present paper focuses on new results for the less fam- 
iliar stability regions in the parametric space: rest 
states which are linearly stable but steady flows exist 
for them and unstable rest states without steady flow 
solutions. A new result is the discovery of a sub- 
zone where the long-range solution, either periodic or 
steady flow, depends on the initial conditions. The 
dynamics of the double diffusive processes leading 
to all these phenomena are explained. More results, 
demonstrating various effects, are presented and dis- 
cussed in ref. [ 131. 

2. THE THEORETICAL MODEL-STEADY 

SOLUTIONS AND STABILITY 

The loop under consideration is shown in Fig. i. It 
consists of two vertical insulated channels between 
two well mixed containers, where the temperatures 
and salinities are maintained constant, to, sD at the 
bottom and tu, sU at the top. Although this is a simple 
system, it can serve to gain understanding about 
double diffusive processes occurring in channels con- 
necting large mixed bodies of fluids, such as acquifers, 
important for the application of compressed air 
energy storage and reactor cooling loops, either gas 
or liquid, with penetration of impurities after a hypo- 
thetical accident. It is believed that the effect of 
realistic boundary conditions compared to the ideal- 
ized situation treated here, is to change the values 
of parameters such as critical Rayleigh numbers. 
However, the same stability regions and transient 
flow, heat and mass transfer patterns would be exhi- 
bited. This is indeed indicated by the preliminary 
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NOMENCLATURE 

A dimensionless amplitude of oscillation 
u radius of pipe 

.‘: 

acceleration of gravity 
friction coefficient 

FH, F,, F, dimensionless buoyancy force and 

N 

I, J 

K%, K, 
L 
n 

ii 

Y 

q 

R 

4 

4, 

its components. FB = F, - Fs E RI-XI 
dimensionless heat per unit area removed 
during one half cycle, equation (17) 
temperature and salinity integrals, 
equation (12) 

solute and thermal diffusivities 
height of loop 
number of grid points 
modified Prandtl number, equation (4) 
inverse Lewis number, equation (4) 
dimensionless net heat flux removed from 
the sink 
dimensionless average net heat flux 
removed from the sink during long- 
term stable oscillations, equation (16) 
modified thermal Rayleigh number, 
equation (4) 
critical thermal Rayleigh number, for 
steady-state flows 
critical thermal Rayleigh numbers, 
region D of Fig. 3 

RM, R. critical thermal Rayleigh numbers. 
for monotonic and oscillatory 
instabilities 

s modified saline Rayleigh number, 
equation (4) 

s salinity 
T dimensionless time 

I 

u 
V 
w, @ 

Y 

z 

temperature 
initial dimensionless velocity 
dimensionless velocity 
dimensionless stable and unstable steady- 
state velocities 
dimensionless location of a fluid particle 
emerging from the bottom container. 
after one half cycle, equation (17) 
dimensionless vertical coordinate. 

Greek symbols 
[Is, j$ saline and thermal expansion 

coefficients 
0 dimensionless tem~rature 
R, p numerical coefficients, equation (10) 
v kinematic viscosity 

P density 

; 

period of oscillation 
dimensionless salinity 

w dimensionless frequency of oscillation. 

Subscripts 
D lower container 

t 
at location Z, 
upper container 

I,2 channels with upward and down~rd 
flows (Fig. I and equations (2)). 

Superscripts 

.i at time T’ 
* bifurcation of oscillatory and monotonic 

marginal stability lines. 

theoretical results of ref. [ 141, for a square loop which 
could be constructed and tested in a laboratory. 

A one-dimensional model is adopted and use is 
made of the Boussinesq approximation, where the 
density is taken as constant in the governing equations 
except the gravity term in the momentum equation; 
there p is linearly related to the temperature and 
salinity. Laminar flow is considered, because most of 
the interest here is in development of flow from rest. 
Thus also the above boundary conditions are realistic, 
surface tension effects and local pressure drops at the 
ends of the channels are neglected and the friction 
coefficient is taken to be f’= 16/Re, where Re is the 
Reynolds number. Mertol et al. [15] performed a 
transient two-dimensional analysis of a toroidal loop. 
They found that during the initial stages of flow devel- 
oping from rest with a rather small Rayleigh number. 
rapidly decaying fluctuations off occur around and 
close to an average value of nearly 16/Re. For higher 
Rayleigh numbers ,f Re > 16, showing that the use of 
forced flow correlations in natural circulation models 

is not accurate. However, little is known about friction 
and heat transfer correlations for loops of other 
geometries, especially for transients, and it is surmised 
that the effects of changes off’ are generally similar 
to those of different boundary conditions, as discussed 
above. 

The equations governing the problem were written 
in ref. [l2]. Their dimensionless form is obtained by 
normalizing length by L, velocity by KJL, time by 
n”jSv, and temperature and salinity diff&ences by 
(tn - to) and (so -sc). The momentum equation is 
integrated around the loop to eliminate the pressure 
term, and in the energy and diffusion equations the 
axial conduction and diffusion terms are kept 

dif 
d-T = R o i 

’ (0, -0,) dZ-S (4, -&) dZ- I’ 

(1) 

@a) 
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FIG. 1. A schematic description of the double diffusive natu- 
ral circulation loop. 
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(+ and - denote upward and downward flow in 

channels 1 and 2). The boundary conditions are 

0=1, $=I at Z=O 

O=O, 4=0 at Z=l. (3) 

For the transient flows, initial conditions for V, 

e,,,(Z) and 4,.*(z) are also specified. The dimen- 
sionless parameters of the problem are the modified 
Rayleigh numbers for temperature and salinity, modi- 
fied Prandtl number and inverse Lewis number 

R = gpi(rc, - t,)La2/16vK, 

S = g/II&,,-s,,)La*/l6vK, 

I’ = 8(L/A)2v/Kt, Q = KJK,. (4) 

It is noted that the time scale here is different from 
that in ref. [12], thus P appears in equations (2) and 
not in the momentum equation. However, the steady- 
state solution and marginal stability curves obtained 
in ref. [12] do not change. It follows from the con- 
tinuity equation that the velocity depends on the time 
only, V = V(T). A negative value of V means reverse 
flow in the loop. The equations have always (for any 
value of the system parameters) a no-flow solution, 
also referred to as conductive or rest solution 

v=o, O,=O,=f$,=@,=l-z. (5) 

Convective steady flow solutions also exist 

evz_eY 
8, =-. 

1-e” ’ Q2=8,(Z;-V) (64 

42 = 4,(Z; -QV (6b) 

where the velocity is given by the solution of the 

algebraic equation 

R($+;)-S($$&)=V. (6~) 

Steady-state results are presented in ref. [ 121. An 

example is shown here in Fig. 2 with some new results 
for higher Rayleigh numbers. It can be seen that the 

solution does not depend on P, and that for thermal 
Rayleigh numbers below a critical value R,(Q, s> 
there does not exist a steady flow. In the region 
RM(Q, S) > R > R, there are two solutions and for 
R > R, only one. The multiplicity of the steady-state 

solution is larger, because for any one with velocity 
W, the mirror image flow - W is also a solution (there 

is no preference to any channel). Thus, for example, 
there are five solutions in the region R, >, R 2 R,. 

A linear stability analysis was performed in ref. 

1121. It showed that all the convective solutions on the 
lower branches of the curves of V(R; S; Q), i.e. m, 
see Fig. 2, are unstable for small perturbations, while 

all the solutions on the upper branches, W, are stable. 
Results of the stability investigation of the rest state 
are reproduced, again, from ref. [12] in Fig. 3 as a 
chart in the R-S plane for Q = 2 and P = 1. The chart 
depends on the Prandtl and Lewis numbers, as shown 
in ref. [ 121. Two types of boundary curves were 
revealed; the first is a monotonic marginal stability 

line (MMSL), which coincides with R, 

R= R, =6+QS. (7) 

Small disturbances should grow for R > R, and 
decay for R < RM. monotonically. This line does not 

depend on P. The other line is an oscillatory marginal 
stability line (OMSL), R,(S; Q, P), which branches 
off from the MMSL at the point S*, R* shown in Fig. 
3. Small perturbations should grow in an oscillatory 
mode for R > R. and decay in this mode for R < R,. 

The frequencies of the critical perturbations, associ- 
ated with points on the lines Ro, were found in the 

analysis of ref. [ 121 but not included in that reference. 
They are listed in Table 2 of ref. [13], and for Q = 2, 
P = 1 in Table 1 here. It is shown in refs. [12, 13) that 

the lines R. for various values of P intersect each 
other and also the line R,. 

The general analytical results of ref. [12] show that 

for any value of the inverse Lewis number, Q, and the 
modified Prandtl number, P, the marginal stability 
lines R, and R, and the critical Rayleigh number Kc 

divide the S-R plane into five main stability regions 
for small disturbances, as illustrated in Fig. 3. Region 
A is that of global instability, where a perturbation 
should grow monotonically. Region B is that of stab- 
ility, where every small disturbance should decay 
(monotonically below R, and with oscillations below 
R,), and there does not exist a steady flow in the 
loop. In region D R, > R > Rc and R > R,. Here a 
perturbation should grow in an oscillatory mode, and 
four convective solutions exist, two stable (+ W) and 
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FIG. 2. Dimensionless steady-state velocity, V (‘convective solution’), as a function of the thermal Rayleigh 
number, R. for various values of the saline Rayleigh number, S. The inverse Lewis number is Q = 2. 

900 
t STABILITY CHART 

FIG. 3. Stability chart in the Rayleigh numbers plane, S-R, for the inverse Lewis number Q = 2 and the 
Prandtl number P = I. The stability regions are : A, monotonic instability ; B, glObdl stability ; C, subcritical 

instability: D. supercritical instability; E, periodic. 

two unstdbk (k @). This region is called supercritical 
instability. It has been found here from the numerical 
results that it can be divided into two sub-zones, Dl, 
D2 by the line R,,. The characteristics of these sub- 
zones are presented and discussed in Section 4.3 
below. In region C, the steady solutions exist, again, 
but small perturbations should dc:ay (monotonically 
or with oscillations). This situation is referred to as 
subcritical instability, and it is implied that larger 
disturbances would develop with non-linear effects 
until a steady flow be established. In region E, where 

R, > R > Ro, small disturbances should grow but no 
steady flows exist. It was postulated in ref. [12] that 
here non-linear effects take-over at some time, “lead- 
ing to either a decay to the rest state or to transient 
behaviour, possibly of a ‘chaotic’ type”. 

The transient analysis performed in the present 
work and described in the following sections, 
validates, indeed, all these flow types in the various 
stability regions. Quantitative results are presented 
for the velocity, temperature and salinity fields V(T), 
O,,,(Z, T) and q5,,?(Z, T), depending on the system 
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Table 1. Frequency of oscillations on the oscillatory marginal 
stability line R. of Fig. 3 : P = I, Q = 2 

s R W s R W 

33 72 0 
33.5 72.30 0.600 
34 72.58 0.855 
34.5 72.87 1.047 
35 73.16 1.209 
36 73.13 1.481 
38 74.89 1.912 
39 75.47 2.094 
40 76.05 2.262 
42 77.21 2.564 
44 78.37 2.834 
46 79.53 3.080 
48 80.69 3.309 
50 8 I .96 3.521 
55 84.77 4.002 
60 87.69 4.432 
65 90.61 4.822 
70 93.54 5.183 
80 99.42 5.835 
90 105.3 6.418 

100 111.2 6.951 
110 117.2 7.444 
120 123.2 7.904 
I30 129.1 8.337 
140 135.2 8.747 

150 
175 
200 
250 
300 
350 
400 
450 
500 
600 
700 
800 
900 

1000 
1500 

2500 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 

141.2 9.138 
156.3 10.04 
171.6 10.86 
202.5 12.33 
233.9 13.61 
265.6 14.11 
297.6 15.83 
330.0 16.81 
362.6 17.72 
428.8 19.39 
495.9 20.90 
563.8 22.29 
632.4 23.57 
701.7 24.77 

1055 29.91 
1417 34.14 
1784 37.82 
2154 41.15 
2896 47.06 
3640 52.33 
4381 57.15 
5120 61.64 
5856 65.86 
6589 69.86 
7320 73.67 

parameters R, S and on initial conditions. The effects 
of Q and P were studied by ref. [13] and the main 
results are reviewed below. Frequencies of the oscil- 
latory patterns are also found. For regions E and Dl 
it is shown that periodic oscillations with constant 
frequencies and amplitudes are established, which are 
not monochromatic, i.e. not simple harmonic. 

3. THE NUMERICAL NlETHOD 

The transient solution of equations (I)-(3) is per- 
formed by the implicit finite differences method 
described below. It is based on the Crank-Nicholson 
method to solve the P.D.E. (2), and the modified Euler 
method to solve the O.D.E. (I), where the integrations 
are carried out by the Simpson quadrature. 

The equations are written as 

= _:(RHS’+ 1 + RI-w), ; 

for any point Zi and time interval (rl-j, T’+ ‘). Central 
differences are taken for the first and second spatial 
derivatives, on the right-hand sides of the equations. 
This procedure leads to the tri-diagonal system of 
linear algebraic equations, representing equation (2a) 

-(/f+iV’+‘)8{;l, +(1+2@)@{;’ 

f(-~+AV’+‘)O:;:, = (~~lV’)B:,i-,+(l-2~)O~., 

+(/1-IV’)Q:.;+,, i= 1,2.3 ,..., n-l (9) 

where n is the number of grid points, i.e. n = l/AZ 

AT 
k=jp(Az)2T 

+6T. 
4PAZ 

(10) 

The finite differences form of equation (2b) for O2 is 
obtained by introducing in equation (9) -I instead 
of %. Similarly, p/Q and k I are inserted in equation 
(9) for $,.2. The form (8) for equation (1) leads to 

y/+1 - 1 
- ---.-- 

1 +AT/2 

+~~[R(zjf’+I’)-S(J”‘+P)1 (II) 
1 

where 

It is noted that the problem is nonlinear and Vi” 

is not known a priori on the left-hand side of equation 
(9). Therefore, the following iterative procedure is 
used, for any time step : 

(1) VJ, 0; and (p! are known from the solution for 
the previous time step (and from the initial conditions 
for the first one). 

(2) A value for V I+ ’ is chosen as a first guess. 
(3) Equations (9) are solved by the Thomas algo- 

rithm to get the fields ai,:,‘, &;“,’ . 
(4) These fields are used to calculate the integrals 1, 

f (equation (12)) and a new value Vi+ ’ is computed 
by equation (11). 

(5) Steps 3 and 4 are repeated iteratively until con- 
vergence of V I+ ’ to the required accuracy is achieved. 

(6) Convergence of @,t2’, ${:‘,I is checked and steps 
3-5 are repeated if necessary. 

This double-nested iterative procedure is obviously 
implicit, and convergence has been obtained quite 
comfortably in all the cases investigated here. The 
solution was performed on the Technion IBM 3081 
computer, by a program developed in this work. A 
few examples are given in ref. [ 131 for the convergence 
patterns as a function of the grid size and time step, 
AZ and AT, for both monotonic and oscillatory tran- 
sients. Most of the results presented in the following 
sections are for V(T). The numerical parameters in 
each case were chosen so as to achieve an accuracy of 
0.1% for the velocity, except for cases with large 
values of R (R 2 400) where accuracies of a maximum 
of 1.5% or less were maintained, in order to save 
computer time and memory. 

4. RESUl.TS AND DISCUSSION-VELOCITY, 

TEMPERATURE AND SALINITY FIELDS 

4. I. Initial conditions : instability and stability regions 

A, B 
The computer program was used to obtain transient 

results for many cases in a wide range of the par- 



548 Y. ZVIRIN 

ameters R, S. P and Q, and for many types of initial 
conditions (ICs). Results are shown here mainly for 
the following two IC types, which appear more fre- 
quently in practical applications. (a) An initial con- 
dition of the rest state (conductive solution with no 

flow), where the temperature and salinity distributions 
are linear, equation (5). A small initial velocity, 
U = 0.01 in most cases, is imposed at T= 0. This 

transient is called here NF. (b) Initial velocities U 
which are not small, with U and 4 profiles given by 
inserting V= U in equations (6). These transients, 
referred to as FF in the following, are transitions from 

initial steady forced flow to natural circulation, for 
example by shutting off the driving pump at T = 0. 

Other KS studied in the present work include 
additional finite velocities 0 < U 6 100, with the rest 
0 and 4 distributions or the unbalanced profiles 

I), = g2 = I, (I, = 4, = 0, and other very small per- 
turbations, e.g. U = 0 and 0 and 4 given by the con- 
ductive solution (5) except for a local deviation at one 
point only: O,(Az) = 4,(AZ) = I. 

It was found that the qualitative behaviour of the 
solution within each of the stability regions A-E in 
Fig. 3 is similar, the values of the parameters affect 
only the transition between the regions and the quan- 
titative solution (i.e. absolute values of the velocity. 
temperature and salinity and amplitude and frequency 
of oscillations). Numerous solutions have been 
inspected ; we have chosen to concentrate on pre- 
senting results for single values of the Prandtl and 
Lewis numbers : Q = 2, P = 1, and to show the effect 

of the Rayleigh numbers R and S. This corresponds 
to working with the same fluid and changing (e.g. in 
experiments) the parameters R and S, which can be 
controlled by imposing temperature and salinity 
differences. Reference 1131 includes more results for 
ali the stability zones A-E and also several examples 
for other values of P and Q and other ICs. 

As mentioned above, the present paper focuses, 
for brevity. on the less familiar and more interesting 

stability regions. Therefore. for regions A and B of 
Fig. 3 only general trends are summarized. The results 
for the global stability region A show that the steady- 
state flow is approached monotonically from any 
initial condition. The rate of the transient is faster 
when the destabilizing Rayleigh number, R, increases 
and the stabilizing 5’ decreases. as expected. FF tran- 

sients hardly depend on Q and strongly on P. in 
different manners which vary with R and S. 

The transients studied in the stability region B of 
Fig. 3 always decay to rest, regardless of the IC, either 
monotonically or oscillatory (depending on the 
location relative to the marginal lines R. and R,). 
This seems to indicate that region B is of global stab- 
ility, where any initial flow is attracted to the con- 
ductive solution. This deduction is strengthened by 
the analytical results of refs. [9, lo], which showed the 
existence of a global stability zone for a loop model 
without heat and mass diffusion, which tend to sta- 
bilize the system. 

4.2. Subcritid instability region, C 

Region C in Fig. 3 (R, < R < R,, R,,) is that of 
subcritical instability, i.e. small perturbations to rest 
should decay (for states below either the MMSL or the 
OMSL) and four steady convective solutions exist : 
stable & W and unstable + @ (see Fig. 2f. It has 
been found, indeed, from the numerical solutions, 
that small disturbances to the rest state in this region 

always decay, monotonically or with oscillations, 
depending on the location of the state in the region. 
Examples of l’(T) transients for states in region C are 
presented in Figs. 4 and 5. An interesting phenomenon 
has been obtained for transitions from finite initial 
flows : FF transients with initial veIocities smaller than 

the unstable steady ones. U < .@, always decay to the 

rest state, while for U > I@ the stable steady flow 
with Y= W is established. Transients starting from 
conductive (rest) profiles of 0 and 4 by imposing a 
finite initial velocity Udevelop to steady flow solutions 
if at some time during the periodic process the velocity 
exceeds the value I?“. If, however, the amplitude does 
not reach this value, oscillatory decay to rest occurs. 

Figure 4 shows FF transients in the right portion 
of region C, below the OMSL. For li > I@, the stable 
convective solution is reached monotonically, both 
for U > Wand U < IV. The stability of this final state 
is demonstrated in the straight horizontal line V = W 
for U = W, thus the numerical disturbances do not 
affect this stable flow solution. When U < I&‘, an oscil- 
latory decay to the conductive solution (W = 0) is 
observed, as expected for points below R,. The tran- 
sient with 0 = I@ is interesting : for a rather long time 

V(T) is almost constant at this value, but a very small 
decrease finally leads to oscillations and decline to 
rest. It is noted that this is a feature of the numerical 
parameters, and a different choice could cause the 
solution to simulate a velocity increase. Similar pat- 
terns were observed in the left portion of region C. 
NF transients. obviously with li < @, always decay 
as shown in Fig. 5, which includes states below either 
R, or Ro. Near the MMSL (R = 26) the oscillation 

consists of a strong overshoot, followed by one flat 
undershoot leading to rest. The other cases (R = 30, 
39) below the OMSL. exhibit oscillatory decay. The 
frequency, 8, of the oscillations decreases with R and 
also Q. P and increases with S; the amplitude, A. 
increases with both R and Sand also with Q, P. These 

trends have the same f&hion as in region B. see aiso 
Fig. 14. The double diffusive dynamics of the oscil- 
lations and other flow patterns are discussed below. 

Figure 5 also shows two transients with finite Cl 
and linear (rest) initial 0 and 4 profiles (for R = 57. 
S = 26). For the one with U = 0.237, A is just below 
I@ = 0.646 and oscillatory decay occurs. For the one 
with U = 0.238, monotonic increase to Wcommenccs 
after V reaches I&‘. The role of I@ as a critical velocity 
for various transients will also be seen from results 

for region D. 
As observed from Fig. 5 and from the results of 

ref. 1131, the decay to rest is slower when the state 
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5 k 

T 

FIG. 4. FF transients, region C of Fig. 3. Monotonic transition to steady state for U > I@, oscillatory decay 
when U $ @. 

Q-2 P=l R=57 

FIG. 5. NF transients, region C of Fig. 3, decaying oscillations for S > 30, monotonic decay after one large 
oscillation for S = 26 ; growing and decaying finite initial disturbances. 

approaches the marginal stability line RM or R,, i.e. 
when the driving buoyancy force rises by increasing 
R and decreasing S. It is interesting to note that the 
amplitude of the decaying oscillations of NF tran- 
sients can be much larger than the initial velocity. This 
is seen in Fig. 5, and for R = 72, S = 34 it was found 
that the amplitude is _ 3U with a small frequency and 
very slow decay rate. 

4.3. Supercritical oscillatory instability region, D 
Region D in the stability chart (Fig. 3), where 

R > RO and R, < R G R,, is that of supercritical 
instability : small perturbations tend to grow and four 
steady Bow solutions exist with 4 W, + @. The 

numerical results show that NF transients, starting 
from small disturbances to rest, always develop to 
convective flows: either to one of the stable steady 
ones i W or to a stable periodic flow. Obviously the 
latter could not be found by the steady analysis of ref. 
[12]. Examples of all these patterns are presented in 
Figs. 6-10 and discussed in the following. 

Two different patterns have been discovered, for 
two sub-zones of region D. In the first one, 131, 
R > RO or R > RC and R < R, (RD z 101.8 for 
S = 60 and R D m 465 for S = 400), the small dis- 
turbance develops to a periodic stable flow, with 
constant amplitude and frequency, which is not 
monochromatic (Figs. &9). The shape of the cycle 
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3 c NF Q=2 P=l S=60 U=O.Ol 

96 

80 

FIG. 6. NF transients, region Dl of Fig. 3, effect of R on periodic solution. 

FF P=l S=60 R*iOO 

ii= 2.88 

FIG. 7. FF and NF transients, region DI of Fig. 3, effect of the initial conditions. 

becomes more skewed for large S and R, as dem- on the sign of V where the switch takes place. This 
onstrated in Fig. 9. A increases and w decreases when depends on the initial conditions as shown in Fig. 10. 
R rises and S is lowered, as for the decaying oscil- Here for the larger R (116), the small perturbation 
lations in regions B and C. However, here the period seems to grow monotonically to the steady Aow. How- 
of the growing oscillations increases with time, thus ever, a closer look at the initial stage of the transient 
the frequency decreases until the stable periodic flow reveals that the small velocity perturbations decrease, 
with constant w is established. When R rises above first, and only then start growing. This happens 
the critical value R,, we cross to the second sub-zone because the state is below the MMSL, so a small 
of region D, D2, where R, < R < R,. As seen in disturbance tends to decay, but since the state is sig- 
Figs. 8 and 10, the small oscillations grow periodically, nificantly above the OMSL, the conductive solutiqn 
with decreasing o, again, and then at the point when is unstable. Thus the flow picks up again, before the 
V(T) reaches the critical level, F?‘, a complete change velocity changes sign, accelerates and approaches the 
occurs and a monotonic growth commences, leading steady convective solution, without oscillations. A 
to the steady-state flow with W or - W, depending similar process was found to occur for the IC with 
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Q=2 P=l s+oo 

FIG. 8. NF transients, regions DI (R = 450), D2 (R = 470) and E (R = 440) of Fig. 3, effects of R and 
the initial conditions. 

R=4180 4100 

T 

FIG. 9. Oscillatory solutions for large Rayleigh numbers in regions Dl and E of Fig. 3. 

U = 0 and tiny local perturbations to the rest profiles 
of 0 and (fi, except here a few oscillations may first 

appear. 
Figure 7 illustrates both FF and NF transients in 

sub-zone Dl, leading to either the periodic or the 
steady solution, for various initial velocities, U. Sev- 
eral interesting phenomena are exhibited in these 
results. As can be seen here, two different FF processes 
can emerge, depending on whether the initial forced 
flow velocity, U, is larger or smaller, again, than the 
unstable steady one l?‘: monotonic approach to the 
steady flow, W, in the former situation or devel- 
opment of a stable periodic flow in the latter. This is 
also observed for the NF transient (small U) in Fig. 

7, and was found for other values of U and initial rest 
8 and (p profiles, where the steady flow is approached 
monotonically from the moment when V reaches the 
value @. As can also be seen from Fig. 7, the long 
term oscillation amplitude and frequency does not 
depend on the initial conditions. It is noted that the 
NF case here reaches the fully developed periodic 
pattern at T NN 17, longer than the final time shown. 

Figure 8 describes transients in stability regions Dl, 
D2 and E of Fig. 3. The NF transient leads to a 
stable periodic flow in Dl (R = 450), and to the steady 
convective solution W in D2 (R = 470), after V 
exceeds the value fl = 8.8 during the oscillations. For 
R = 450 another type of IC is shown : U = 0 with the 
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RG. 10. NF transients, region D2 of Fig. 3, effects of R and the initial conditions on oscillatory and 
monotonic transitions to steady state. 

unbalanced distributions 8, = &3 = 1, O2 = 4, = 0. 
For this finite disturbance the initial net driving force 
is large (strong buoyancy and weak friction at low V), 
and the velocity sharply rises. A balance of the forces 
is quickly attained, followed by a moderate approach 
to steady state. The same IC leads to a stable periodic 
flow in region E (R = 440), as also with the FF tran- 
sient shown here and all other ICs studied. It is noted 
that the effect of R on the oscillations is continuous 
across the Iine R, separating regions D and E: A 
decreases and (I) increases when R is lowered (and 
when S rises). This is seen, again. in Fig. 9 which 
shows the skewed patterns for large R and S. As seen 
in Figs. 6-10, the effect of raising the destabilizing R 
is also to accelerate the transients : as R increases, the 
stable steady state, with increasing / WI, or the Iong- 
term stable oscillations are approached faster. A simi- 
lar effect was observed for decreasing the stabilizing 
parameter, S, cf. ref. [ 131. 

4.4. Region of periodic solufions, E 
Region E in the stability chart (Fig. 3) lies above 

the OMSL and below R,. Thus rest states in it are 
unstable and steady flows do not exist. This means that 
all the solutions must be time dependent, which has 
been confirmed, indeed, by the numerical resutts. In 
all cases, for both NF and FF transients and other 
IC studied, the flow exhibits developing oscillations, 
during which the frequency decreases with time, lead- 
ing to stable periodic solutions. These have constant 
amplitudes and frequencies but their shape is, again, 
skewed (not simple harmonic) and depends on the 
time during the cycles. 

Figures 8, 9 and 11 show the development of the 
periodic flows for various transients. The processes in 
this region progress at a slower rate than those in the 
other stability regions; in general, they are faster as 

R increases and S decreases. The initial velocity in all 
cases of Fig. 1 I is U = 0.1. It was found in ref. [I 3J 
that for U = 0.01 and for U = 0 with very small 
local disturbances of 0 and 4, the rate of the transients 
is much slower. As before, the effect of increasing R 
is to increase the amplitude and decrease the frequency 
of the stable long-term oscillations, the effect of S is 
opposite and the shape of the oscillations become 
more skewed with increasing Rayleigh numbers. This 
phenomenon is clearly seen in Fig. 9 for S = 4000, 
R > 4000. 

The results in the present paper are for P = 1, 
Q = 2; a few examples are given in ref. [I33 to show 
the influence of these parameters. The results show 
that the amplitude increases and the frequency 
decreases when Q and P rise, with a much sharper 
effect of the latter. An interesting resuit is that the 
time to establish the long-term periodic flow from a 
small perturbation becomes longer as Q decreases, 
while the rate of oscillations decay for FF transients 
in region B was found to be faster when Q decreases. 
These opposite trends hint at the difficulties encoun- 
tered when attempting to explain the effects of the 
parameters and the physical phenomena of the non- 
linear complicated problem. However, let us discuss 
now the double diffusive dynamics of the periodic 
flow. 

Figure 12 demonstrates the relation between the 
time-dependent velocity, temperature and salinity 
during a stable periodic solution for S = 400, 
R = 400: V(r) is plotted together with the tem- 
perature 0, and salinity & at mid-height of the loop 
(2 = l/2). The initial velocity of the FF transient is 
U = 7.5, close to the amplitude of the stable oscil- 
lations. It is seen, as noted above, that there are (con- 
stant) phase shifts between V, 8 and #X These can 
cause instabilities of oscillation growth even in a 
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FIG. 11. NF transients, region E of Fig. 3, effect of R on periodic flow, U = 0.1. 
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FIG. 12. Long-term stable periodic solution in region E of Fig. 3 : the velocity Y, the temperature 8, and 
salinity 4 2 at mid height of the loop ; 36 < T < 40. 

single-phase single-component loop, as demonstrated 
by Welander [4]. In our case, the mechanisms of the 
double diffusive stable and unstable oscillations are 
explained by observing the behaviour of the forces 
appearing in the momentum equation (1). Figures 
13(a) and (b) describe the time-dependent buoyancy 
force, Fs, and its components F,, F,, and also V(T) 
which is the dimensionless friction force, for transients 
in regions E and D. V(T) for these two transients 
is also illustrated, on a larger scale, in Fig. 8. The 
acceleration dV/dT is equal to the net balance force, 
F, - V, and V increases whenever F, exceeds the fric- 
tion (V). During the oscillations in region E (Fig. 
13(a)), the magnitude of the stabilizing force, F,, is 

larger than that of the destabilizing one, F,. Both grow 
initially, as the temperature and salinity distributions 
build up, and due to the phase shift between them a 
periodic net buoyancy force always exists, driving the 
fluid in growing and then stable oscillations. The 
cycles are not monochromatic because of the non- 
linearity of the effects: the mutual dependence and 
phase shifts between F,, F, and V. When R increases 
and we move into region D, the magnitude of the 
destabilizing force, F,, becomes larger than F,, see Fig. 
13(b). The oscillations grow initially as before ; in 
region Dl (not shown in this figure) the amplitude 
does not reach the critical value @and stable periodic 
flow is established. In region D2 (Fig. 13(b)), V 
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FIG. 13. Transient behaviour of the buoyancy force FB and its components F,, F,. and the friction force 
which is equal to V: (a) region E; (b) region D2. 

reaches #’ at some point, and an immediate switch 
occurs to the stable upper solution branch seen in Fig. 
2. Ft stays larger than F,, and the driving force FH 
tends to a constant value, which is equal to the 
friction, given by the velocity V-+ W (Fig. 13(b)). 
Thus a stable steady flow is established. Further 
increase of R causes the state (in the parametric space) 
to move above the MMSL, into the instability region 
A, where any disturbance grows monotonically. 
Decreasing R below the OMSL leads to oscillatory 
decay to rest. The effects of S are opposite. 

All the results obtained here for regions E and Dl 
of the loop under consideration, show that for this 
system only stable long-term solutions are estab- 
lished : either steady or periodic ones, but no chaotic 
situations were detected. Such chaotic solutions were 
discovered, for example by Hart [I I], in regions where 
unstable steady solutions exist with no (unpaired 

with) stable flows. For the present loop we have found 
that in cases of unstable-steady states V = @ or 0 
there are also stable ones, W, and the transients lead 
to either the latter or to stable periodic flows. 

Figure 14 shows the long-term frequency of oscil- 
fations. CD, as a function of the Rayleigh numbers. The 
various stability regions (where periodic flows exist) 
are marked in the figure as well as the marginal lines 
separating them. It is seen that w increases when R is 
lowered and when S is raised. It changes continuously 
upon crossing from region to region through the lines 
Ro, R, and Rc. It was also found that the frequency 
decreases when P and Q rise. The frequencies obtained 
from the numerical solutions for points on the mar- 
ginal stability lines, exactly agree with the values cal- 
culated analytically in ref. [12], listed in Table I. The 
theoretical limit of the frequency for R approaching 
the monotonic marginal stability line, R,, from 
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FIG. 14. Frequency dependence on the thermal and saline Rayleigh numbers R and S, in the stability 
regions B-E where oscillations occur. Q = 2, P = I. 

below, is obviously zero. The results of the present 
work show that this limit is realized only in the narrow 

zone near the intersection of the MMSL and OMSL, 
R,. The frequency for S = 40 and the relatively larger 
R, see Fig. 14, tends, indeed, to zero. At higher values 

of S and R, states just below RM are deep in the 
instability region D (sub-zone D2). A small dis- 

turbance to the rest state declines slightly, followed 
soon by non-linear effects which cause a rather quick 
monotonic transition to one of the two stable solu- 
tions f W. 

5. RESULTS AND DISCUSSION-HEAT 

TRANSFER 

The equations governing the velocity, temperature 
and salinity fields in the double diffusive loop were 

developed in Section 2 and solved by the numerical 
method outlined in Section 3. Results for these fields 
were presented and discussed in Section 4, for all the 
regions in the stability chart (Fig. 3). Here the heat 
transfer characteristics of the loop are studied, mainly 
for the purpose of evaluating the capability of the 
system to remove heat from the heat source in the 
bottom to the sink at the top. 

The heat transfer is more important and of interest 

for the long-term system flows than for the initial 
stages of transients leading to them. We have 
observed either stable steady states or stable periodic 

oscillations; these two types of long-term solutions 
are treated in the following. Let us consider, first, 
stable steady flows with large velocities, at high values 
of the driving force, represented by the difference of 
the Rayleigh numbers : R-S. In this case I’ = W >> 1 
and the temperature distributions approach 0, = 1, 
Q2 = 0 (except for small sections near the top for 8, 
and bottom for Hz). Thus heat is transferred almost 
solely by convection. The heat flux between the source 
and the sink is proportional to the product of the 
velocity and the temperature difference t,, - tU, or in 
dimensionless form 

q= w, w>> 1. (13) 

This result can also be found from a more general 
and rigorous derivation. Consider a small control vol- 
ume consisting of the two loop channels, between the 
bottom container, Z = 0, and a short elevation 6Z + 
0. The rate of energy delivery into the heat source by 
the flow in the downcomer (channel 2) tends to be 
equal to the rate of energy convected from the source 
into the riser (channel 1): the velocity is the same 
(due to continuity) and both temperatures 8, and Q2 
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Table 2. Average long-term heat Bux for various stable periodic solutions 

s R Region 512 H B w I’ 

60 100 Dl 1.338 3.24 2.43 36.1 2.14 
400 400 E 0.269 0.965 3.59 --- I.22 

4oou 3000 E 0.0656 0.300 4.57 - 0.94 
4000 4100 E 0.197 2.27 II.5 -I.- 3.04 
4000 4180 01 0.394 6.14 15.6 IS2 7.33 

approach the value 1. Therefore, the expression for 
the net heat flux is dominated by the conduction terms 

It is noted that the above argument and the last 
relationship hold not only for steady states but for any 
transient too. For the former flow, the temperature 
derivatives can be calculated from equations (6a), 
yielding (do ,/dZ), --+ 0 and (dN,/dz), -+ - W when 
W >> I. Thus the general expression (14) for the heat 
flux approaches the result (13) for strong convection. 
The other limit of q, for conduction controlled pro- 
cesses where the velocity is small, can be found from 
the linear distributions (5) 

4=2, W-+0. (1% 

For stable periodic flows, the instantaneous heat 
flux removed from the source is given by equation 
(14). The long-term average is obtained by integration 
of y(T) over a half cycle 

A few results for q are presented in Table 2, for 
several periodic solutions in regions E and Dl of Fig. 
3. As can be expected, the heat flux in the latter cases 
are much lower (by an order of magnitude or more) 
than those given by equation (13), q = W, for the 
corresponding steady states. The loop is capable of 
removing heat even in region E, where no steady flows 
exist. However, if it is required to transfer large 
amounts of heat, it would be necessary to control the 
Rayleigh numbers (raising R and/or lowering S’), such 
as to bring the loop to a stable steady flow in region 
D or even A. It is noted that a finite disturbance would 
be needed to cause steady flow in region Dl, while 
any perturbation to rest would lead to a convective 
solution in regions D2 and A. 

The relative importance of the heat transfer mech- 
anisms in the process of carrying energy between the 
source and sink has been obtained above : q -+ 2 when 
conduction governs and q >> 2 when convection domi- 
nates. As can be seen from Table 2, the role of con- 
vection becomes more significant as the thermal Ray- 
leigh number R increases. 

Another interesting result, also presented in Table 
2, is the equivalent location at the end of one-half 
cycle, of a fluid particle which emerges from the bot- 

tom container at the moment when the velocity 
changes sign (I’ = 0) 

In cases where Y c: 1, as the middle one in Table 2, 
the fluid oscillates in the two channels and there are 
no particles which complete the path between the 
containers. For Y > 1 the quantity Y- 1 is a measure 
of the fluid which does leave the heat source and enters 
into the sink during the half cycle. As can be seen, this 
value is small for low R and becomes larger at high 
thermal Rayleigh numbers. In fact, for the last case 
in Table 2 Y- I is of the order of H which indicates 
strong convection heat transfer. The amplitude of the 
oscillation here is large: 26.83, meaning thar during 
most of the time there is high velocity in the loop. For 
steady flows with large velocities q = W, as shown 
above. For the periodic flow, however, thermal inertia 
accounts for the difference between Y- 1 and H. 

6. SUMMARY 

A numerical method was developed for simulating 
the transient flow, heat and mass transfer in a double 
diffusive natural circulation loop. A comprehensive 
analysis was performed, using the method, to study 
the system behaviour in all the stability regions of Fhe 
four-pa~meter space : thermal and saline Rayleigh 
numbers R, S, Prandtl and inverse Lewis numbers, P 
and Q. These regions and the marginal lines separ- 
ating them, see Fig. 3, were obtained analyticaliy in 
ref. 1121. 

Two main types of transients were considered: a 
small perturbation to the rest state, NF, and transition 
from forced to natural circulation, FF. In all the 
numerous cases investigated, it was found that the 
genera1 loop behaviour corresponds, indeed. to the 
mode relevant to the location of the state in the stab- 
ility chart. The transients lead monotonicalIy to the 
steady solution in the instability region A, above the 
monotonic marginal stabihty line, R,, and to the rest 
state in the global stability region B, below either this 
line or the OMSL, Ro. The decay to rest is either 
monotonic or oscillatory, depending on the vicinity 
of the state to these lines. The subcritical region C is 

below RM or both I&, and R. and above the critical 
line Rc, where two pairs of steady-state solutions 
exist: stable k Wand unstabie k I& Here NF tran- 
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sients and FF for which the initial velocity, U, is 
smaller than @, decay to rest either monotonically or 
periodically. For U > @ one of the steady solutions 
is always established. A similar behavior is observed 
in Dl , which is a sub-zone of the supercritical region 
D, except that here transients with U < @ lead to 
stable periodic solutions. For other initial conditions, 
these flows are developed in regions C and Dl if 
during the oscillations the growing amplitude does 
not reach @. In sub-zone D2 oscillatory and then 
monotonic transients carry the loop to either one of 
the steady solutions _+ IV, depending on the initial 
conditions. In region E of the stability chart the rest 
state is unstable and no steady solutions exist; here 
all transients develop to stable periodic flows. For all 
cases investigated, no multiple long-term oscillatory 
solutions were found in regions D 1 and E. 

The results show that in all cases either one of the 
three long-term stable situations are established : rest 
(conduction) state, steady flow (f W) or periodic 
solution with constant amplitude and frequency, 
which are not monochromatic. No chaotic situations 
have been discovered for this loop, probably because 
there does not exist any case where an unstable solu- 
tion appears without a corresponding stable one. 

The trend of the constant frequencies, see Fig. 14, 
is to increase when raising Sand lowering R (and also 
when P and Q decrease). w changes continuously 
with these parameters in the whole range, including 
variations of crossing marginal and critical stability 
lines. 

Results for the heat transfer in the loop show that 
for low driving forces, represented by the difference 
R-S of the Rayleigh numbers, the heat transfer is 
conduction controlled, while convection dominates 
for large values. A criterion for estimating the import- 
ance of the two mechanisms was found, based on the 
value of the dimensionless heat flux : q + 2 in the 
former case and q + W in the latter. The loop is 
capable of removing heat from the source to the sink 
even during the periodic flow. Obviously, the heat 
transfer is much lower, then, than that at steady flow. 

The Rayleigh numbers in practical loops such as 
geothermal systems or reactor cooling cycles will be 
large, e.g. 10’ and more. As can be seen from Fig. 3, 
the subcritical region C is quite narrow, and shrinks 
at smaller R and S when Q increases, cf. refs. [ 12, 131. 
However, all other stability regions A, B, D, E may 
be encountered, with the general patterns shown and 
discussed above, where for large R and S the shape of 
the oscillations becomes more skewed. System design 
and control is needed in order to establish the desired 
state, e.g. stable steady flow or rest state. The inverse 

Lewis number, Q, varies in a wide range for various 
component combinations. For salts in water Q % 100 
or more ; for gas-gas mixtures Q NN O(l), e.g. 1.35 
for air-CO,, 2.5 for air-benzene and 0.54 for air- 
hydrogen ; for liquid-liquid pairs the variation is 
larger, e.g. 0.066 for water-HCl and 150 for water- 
ethanol. 

It is finally noted that all the present results show 
that the stability regions A-E exist for all the many 
values of P and Q studied. The patterns of flow within 
each region were found to be similar ; different values 
of the parameters R, S, P and Q only change the 
magnitudes of the dependent variables and the 
location of the marginal lines in the stability chart. 
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PHENOMENE VARIABLE ET STABILITE DANS UNE BOUCLE DE CONVECTION 
NATURELLE DOUBLEMENT DIFFUSIVE 

RBsumGOn applique une methode numerique pour etudier les caracteristiques variables et stables d’une 
boucle de convection naturelle doublement diffusive. Le comportement de l’tcoulement depend de quatre 
parametres d’espace et de proprietb; les nombres de Rayleigh thermique et salin R et S, ainsi que le 
nombre de Prandtl P et l’inverse de nombre de Lewis Q. Le diagramme de stabilite darts cet espace 
comprend cinq regions principales ; des resultats numeriques sont present& pour des Ccoulements dans 
chacune d’elles. L’etat de repos est aussi Ctabli dans la region subcritique si la vitesse initiale est plus petite 
que la valeur critique, sinon on atteint un ecoulement permanent, Dans la region supercritique, des solutions 
periodiques stables sont ttablies a la place de l’etat de repos et dans la region periodique la boucle atteint 
toujours des oscillations stables a partir de conditions initiales quelconques. La frequence des oscillations 
augmente avec S et diminue quand R, P et Q croissent. Le transfert de chaleur dans la boucle est etudie 

et on trouve que de la chaleur peut etre evacuee pendant l’ecoulement ptriodique etabli. 

INSTATIONARE ERSCHEINUNGEN UND STABILITATSPROBLEME IN EINER 
SCHLEIFENANORDNUNG BE1 DOPPELT-DIFFUSIVER NATtiRLICHER 

ZIRKULATIONSSTRC?MUNG 

Zusammenfaasung-Instationlre Erscheinungen und Stabilititsprobleme in einer Schleifenanordnung 
bei doppelt-diffusiver natiirlicher Konvektionsstriimung werden ausfiihrlich numerisch untersucht. Das 
Striimungsverhalten im System hangt von dessen Zustand ab, der durch 4 Parameter definiert ist. Die 
temperaturbedingte und die konzentrationsbedingte Rayleigh-Zahl (R, S), die Prandtl-Zahl (P) und die 
inverse Lewis-Zahl (Q). Die Stabilitatskarte in diesem 4-Parameter-Raum, die bereits friiher ermittelt 
wurde, enthilt 5 Hauptbereiche. Die hier vorgestellten numerischen Ergebnisse decken jeden dieser Bereiche 
ab. Die zeitlichen Entwicklungen nahern sich monoton oder periodisch stabilen stationaren Zustanden an, 
namlich konvektionsbestimmten Striimungen oder ruhenden Zustlnden mit Warmeleitung jedoch ohne 
Strijmung jeweils in den monotonen und insgesamt stabilen Gebieten. Der Ruhezustand stellt sich such 
im unterkritischen Gebiet ein, wenn die Anfangsgeschwindigkeit kleiner als eine kritische Geschwindigkeit 
ist. In anderen Fallen ergibt sich eine station&e Striimung. Im iiberkritischen Bereich ergeben sich stabile 
periodische Liisungen statt des Ruhezustandes, im periodischen Bereich erreicht die Schleife immer solche 
stationlren Oszillationen, unabhlngig vom Ausgangszustand. Die Frequenz der Oszillationen nimmt mit 
S zu, mit R, P und Q jedoch ab. Die Wiirmeiibertragung in der Schleifenanordnung wird ebenfalls 
untersucht. Dabei zeigt sich, daB bei der stabilen periodischen Striimung etwas Warme abgefiihrt werden 

kann. 

I-IEPEXO&HbIE IIPO~CCbI H YCTO@IHmb B KOHTYPE ECl-ECTBEHHOfi 
qHPKYJIlIL@iM C ~kiUW’3ME~ TEl-IJIA U MACCbI 

~%icnemio BccnenyioTcx nepexomnde xaparrepncnfs6 ii napaMeTpk4 ycrohmorm 
rowypa e4ncnwmoii nnpxynmva c i@&3sfeti Tenna n Maa3. Ilosewmie Tewtnw n cwrwe 
3aBECIiT OT IIOJIOSSBU B PCTUpBxllapaMeTpB¶U2xOM w CTBC. TelLno- A MacCoo6MeBBOr0 WiceJl 

Rnea R, S, a Taxzc p~cna IIparlrrrna u 06paraoti ~emwmu ga~na nbIO%itX l', Q. nonyge~~an paace 
xapra ycroltgaeocra B A.XiliOM npocrpaaCree BLmopacT USTb OCIiOBBbIx O6d. ~~CTaBJIBBbI ¶lC- 
n-e pe3ynbTaTar LUIZ~ ~ewmrii B rwoii ~3 BB~. lkpexonmde cocromnu~ MOEOTOHHO aw nepaonn- 
PecxB lIpu6~ ~cn K ycroi@iB~~~ cranBonapmdM cocro~ son~ernm~brx meid unn 
xo~mdx c4x?Tonaag IIoKoa 6e3 Ttsem B MoHoToElioti Ii mo6aJlblSo8i o6JlacTxx ycToihmocTB 
wo~~e~cTBemio. Cocrornme norox lane ycraaaaweanca B ~~~K~ETE%CC oti o6Jlacnl. a2ul ABpBTIb- 
sran cropoczb MeabLlle rparwe~oti, B npoTmui0~ cnylrac HMceT MCCTO CTaqaoBBpHoe rrncase. B 3ax- 
pETFi¶CCxO# O6JNCl-E BMeCTO COCTOBHlll l.lOxOB lIOpMBK)TC# yCTOhiBbKC llCpEOI&B’IecrSe pBIlN?Bar, H B 
3TOti 06~1ac~1i lIpsi JrIO6bzX BB~risdX yCJIOBB!lx KOHyp IIpaXOW B WCTOIIBBC? TaXW yCTOihfBbU 
rone6am& %cToTa rone6d ynewu5acxca c pocroh4 B S n y~caauraercn c y6bmamser+4 
EX?JIE¶EH R, P B Q. Maxe~eTczi TBlue ~en~~onep~~oc B roinyp~, H ycraaoaneao, p10 npn yC~oii¶IieoM 

11ep~on1~1ecror4 Te=iemm HeroTopoe xowsec~no Tenna hfozwrr 0TBoLIBTbcx. 


